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LETTER TO THE EDITOR 

The quantum theory for anomalous low-temperature 
thermal conductivity of non-crystalline dielectric solids 

W L Zhao and B L Zhou 
lnstitute of Metal Research and International Centre fur Materials Physics, Academia 
Sinica, Shenyang, 110015. People’s Republic of China 

Received 18September 1991 

Abstract. We discuss the interaction between two-level systems and the phonon field in non- 
crystalline dielectric solids, and we calculate the quantum transition matrix elements ofsuch 
an interaction. After studying the Boltzmann equation for phonon transport. we obtain the 
phonon distribution function. From a direct calculation of the heat current, and as a result 
of obtaining the thermal conductivity of non-crystalline dielectric solids, the P relation is 
obtained. 

It has been shown that the thermal conductivity of non-crystalline dielectric solids is far 
lower than that of crystalline solids and has a special T z  temperature dependence [l-31. 
Almost simultaneously Anderson [4] and Phillips [5] put forward a model based on a 
two-level system. They assumed that a certain number of atoms have two equilibrium 
positions in an asymmetric double-well potential, and that transitions between the two 
positions are possiblevia tunnelling, whereby a resonant phonon is absorbed oremitted. 
They gave an explanation of the anomalous low-temperature thermal conductivity of 
non-crystalline dielectric solids and obtained a T z  temperature dependence. However, 
in their workarelaxation time approximation is usedand the relaxation time iscalculated 
using a quasi-classical method like that used by Einstein to discuss the interaction 
between atoms and a radiation field. In this letter, this problem has been considered by 
avoiding the relaxation time approximation and using the Boltzmann equation and 
quantum transition theory only. 

The derivation of the T’dependence of the thermal conductivity (for temperatures 
less than 1 Kisdescribed asfollows. Heat current iscarried by phonons in non-crystalline 
dielectricsolids, and the Boltzmann equation has the form 

anjat  + u A  . V,n = C,n) (1) 
wherenisthedensitydistributionofthephonongas,~~is thegroupvelocityofaphonon. 
Cb) is the collision term and ,I is phonon label. The collision term contains ‘normal’ 
processes, ‘Umklapp’ processes, scattering between phonons and two-level systems, 
boundary scattering and other scattering. ‘Normal’ processes and ‘Umklapp’ processes 
areinteractions betweenphonons and they can be omitted at low temperatures. We also 
omit the boundary scattering and other scattering. Therefore, only the interactions 
between phonons and two-level systems are left. 
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The density distribution of the phonon gas depends on temperature only through 
VJin the steady state, i.e. 

vA . V,Tdn/dT = C, (2) 

where C, are the interactions between phonons and two-level systems. According to the 
Boltzmann distribution law, the probability of a two-level system staying in its ground 
state is A ,  and the probability of the two-level system staying in an excited state is A,, 
so 

A ,  = 1/(1 + e-E/knT) 

A ,  = 1/(1 + eE'kBq 
(3) 

(4) 

where E is the energy difference between the ground state and the excited state. The 
interaction Hamiltonian between two-level systems and the phonon field has the form 

where D and M are coupling constants between two-level systems and the phonon field, 
k is the absolute value of the wave vector, p is the mass density, Vis the volume of the 
non-crystalline dielectricsolid and U is the group velocity of the low-frequency phonons. 
Accompanying the transition from the ground state to the excited state of the two-level 
system, one phonon with frequency w is destroyed. The transition probability has the 
form 

P I  = (21c/h)MZn(hk/2pVu)c5(E - ?Io) (6) 

where n is the phonon number. Conversely, for the transition from the excited state to 
the ground state, one phonon with frequency w is created and the transition probability 
has the form 

Pz = (Z~/fi)M~(n + 1)(Bk/2pVu)6(E - Am). (7) 

The collision term has the form 

C , =  I P z A , P ( E ' ) d E ' d V ' - ( P , A , P ( E ' ) d E ' d V  (8) 

whereP(E)isthedensityofstatesoftwo-levelsystemsinunit volume. Throughconcrete 
calculation, we obtain the following form 

(9) C, = ( z M 2 k P ( E ) / p u )  ( ( n  + 1)/(1 + eE:"B3 - n/(l + eVElkBr)). 

We define 

n = n o + n l  (10) 

no = l/(eE/keT -1). (11) 

where no is the phonon number at thermal equilibrium. According to Planclt's law 

Under conditions of thermal equilibrium, n equals no and the collision term is zero, - 
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so 
Cl = ( n M 2 k P ( E ) / p u ) [ 1 / ( 1  + eE/k~r)] - [ l / ( l  + e-E/kB')] n l .  

dn/dT = (eE/kBr/(eE/kBr - 1 ) 2 )  h w / k B T Z .  

(12) 

The contribution of the no term is retained when considering dn/dT, so 

(13) 

Substituting (12) and (13) into (2), we obtain 

n ,  = [eElkBr/(eEIkBT -1) ' ] (hW/k~T')  u1 . V , T { ( n M Z k P ( E ) / p u )  

x [ 1 / ( 1  + eE/&Br) - 1/(1 + e-E'kBr)]}-'. 

Q = u/v) 2 n(A)fiwlvi 

(14) 

The heat current in unit volume has the form 

(15) 
1 

where vi is the group velocity of a phonon. no has no contribution to the heat current, 

Q =  ( 1 / V  Cnl(A)hwhvd.  (16) 

so 

1 

Regarding non-crystalline dielectric solids as isotropic materials, Q has the form 

Q 5 -kVT. (17) 

With a temperature gradient in the x direction alone, we obtain 

n ,  = [eE/*n'/(eE/kBr -1) ' ] (hW/k~T')  u1,(dT/dr){(nM2kP(E)/pu) 

x [ I / ( I  + eE'kB') - 1 / ( 1  + e-E/k~')]]-'. (18) 

Substituting (18) and (16) and contrasting this with (17), we obtain 

For low frequencies in a non-crystalline dielectric solid, the density of states of phonons 
has the Debye form 

g(w) = ( v / ~ + 2 / ~ 3  (20) 

and the dispersion relation has the form 

o = ku. (21) 

Low-frequency terms play an important role in equation (19) (we omit the high- 
frequency terms). P ( E )  should be non-zero and continuous in the vicinity of E = 0, and 
we use the approximation P ( E )  = P,. Replacing the summation by an integration from 
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0 to m, equation (19) can be expressed as 

Assuming hw/kBT = y ,  we can get 

U:/. dependson the characteristics of the material. p, M and Po are physical quantities 
describing characteristics of non-crystalline materials. The integration can also be cal- 
culated. We have calculated the quantum transition matrix element and from the 
Boltzmann equation of phonon transport, we get the phonon distribution function. 
Finally, we get the T2 relation of the thermal conductivity of non-crystalline dielectric 
solids. Considering the isotropy condition, U is regarded as a constant and, assuming 
U: = (1/3)u2, we get 

ey 3 [ I  1 ] - I .  (24) 
k ipu  k =  

6n3h2MZPo T2 .foe dy (eY - 1 + e-Y 1 + e) 

Performing the integration, the final form is obtained: 

k = 9.87(k&pu/6n3h2M?Po)T2. 

In conclusion, in this letter, the relaxation-time approximation and the quasi-classical 
method for calculating the relaxation time are avoided. The physical process is therefore 
more direct and the physical model is more basic. However, we should recognize that 
this work is basedon the phenomenological theory for a two-levelsystem. Amicroscopic 
theory with universal significance is required to explain the problem in more detail and 
more satisfactorily. 

The authors are grateful to Professor Zhou Guangzhao, the director of the Chinese 
Academyof Science, for hissupport. This project wassupported by theNational Natural 
Science Foundation of China (No 5880245). 
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